UAS


1. Pendahuluan[Kembali]

Dalam dunia teknik elektronika dan sistem kontrol, penggunaan sensor analog dan digital sangat penting untuk menangkap data dari lingkungan sekitar dan mengontrol berbagai aktuator seperti motor, kipas, pemanas, dan lampu. Salah satu komponen utama dalam sistem ini adalah penguat, baik yang berbasis operational amplifier (op-amp) maupun transistor. Op-amp digunakan untuk memperkuat sinyal dari sensor sebelum diproses lebih lanjut, sedangkan transistor berfungsi sebagai saklar atau penguat tambahan dalam pengendalian beban.

Aplikasi dari konsep ini sangat luas, mulai dari sistem pengendali suhu di inkubator, sistem irigasi otomatis pada greenhouse, hingga sistem kontrol otomatis pada proyek besar yang kompleks. Penggabungan antara sensor analog dan digital dengan rangkaian penguat serta output yang bervariasi memberikan tantangan tersendiri dalam mendesain sistem yang efisien dan akurat.

adapun dengan soal:

  1. Buatlah suatu rangkaian aplikasi penguat dengan op-amp, menggunakan 2 input sensor (analog & digital) dan output seperti motor atau komponen output lainnya.
  2. Buatlah suatu rangkaian aplikasi kontrol greenhouse menggunakan input-input sensor dan output-output seperti motor atau komponen output lainnya.

  3. Buatlah suatu rangkaian aplikasi kontrol incubator dengan ketentuan:

    • Ada sensor analog dan sensor digital

    •  Ada kondisi ≥ 2 sensor untuk suatu output dan kebalikannya

  1. Buatlah suatu rangkaian aplikasi sesuai Tugas Besar anda yang terdiri dari ≥ 5 input sensor (analog & digital) dan output (seperti motor, heater, Fan, lampu dll) dengan melibatkan rangkaian kontrol yang memakai penguat transistor (bias berbeda) dan op-amp (tipe rangkaian yang berbeda).

2. Tujuan[Kembali]

  1. Memahami dan menerapkan prinsip dasar penguat op-amp dan transistor dalam rangkaian elektronik yang melibatkan sensor dan aktuator.

  2. Merancang sistem kontrol sederhana hingga kompleks dengan mengintegrasikan lebih dari satu jenis input (analog dan digital) dan berbagai jenis output.

  3. Mengembangkan keterampilan dalam menggabungkan berbagai komponen elektronika, seperti sensor, penguat, dan aktuator, ke dalam suatu sistem fungsional.

  4. Melatih kemampuan analisis dan desain sistem kontrol, baik untuk aplikasi kecil seperti inkubator maupun sistem besar seperti greenhouse otomatis.

  5. Mengasah kreativitas dan kemampuan pemecahan masalah teknik, melalui tugas besar yang menuntut rancangan sistem dengan ≥ 5 input sensor dan kontrol output yang kompleks.

  6. Menyelesaikan ujian akhir semester dengan menerapkan teori yang telah dipelajari ke dalam implementasi nyata dalam bentuk rangkaian elektronik yang sesuai dengan ketentuan soal.

3. Alat dan Bahan[Kembali]

  A. Alat   

  • Dc Voltmeter (Instrument)
Sebuah voltmeter DC mengukur beda potensial antara dua titik dalam sebuah rangkaian DC kemudian dihubungkan paralel dengan sebuah sumber tegangan atau komponen rangkaian.
    
    B. Bahan

  • Resistor


Resistor adalah komponen dasar  elektronika  yang berfungsi menghambat/membatasi jumlah arus input atau arus yang mengalir masuk ke dalam satu rangkaian, dimana kemampuan resistor dalam membatasi arus masuk sesuai dengan spesifikasi resistor tersebut. Sesuai  dengan  namanya  resistor  bersifat  resistif  dan umumnya  terbuat  dari  bahan   karbon.

  • Kapasitor



Kapasitor atau disebut juga dengan kondensator adalah komponen elektronika pasif yang dapat menyimpan energi atau muatan listrik dalam sementara waktu.

  • Dioda

Dioda memiliki fungsi sebagai penyearah arus listrik. Fungsi dioda atau diode adalah mampu mengubah arus bolak-balik (AC) menjadi arus yang searah (DC). Dioda memiliki fungsi sebagai penyetabil tegangan.

  • Komponen Input

        1. Vibration Sensor

Sensor Vibration berfungsi sebagai alat untuk mengubah besar sinyal getaran fisik menjadi sinyal analog. Dari sana juga akan terlihat besaran listrik dan berbentuk rupa tegangan listrik yang ada.

        2. Touch Sensor

Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya.


        3. Sound Sensor

Sensor suara adalah sebuah alat yang mampu mengubah gelombang sinusioda suara menjadi gelombang sinus energi listrik. Sensor suara ini digunakan untuk menghantarkan listrik berdasarkan pendeteksian suara untuk menghidupkan perangkat yang dihubungkan.

        4. Infra Red Sensor


Sistem sensor infra merah pada dasarnya menggunakan infra merah sebagai media untuk komunikasi data antara receiver dan transmitter. Sistem akan bekerja jika sinar infra merah yang dipancarkan terhalang oleh suatu benda yang mengakibatkan sinar infra merah tersebut tidak dapat terdeteksi oleh penerima.

        5. Logictoggle

Toggle switch adalah saklar sederhana yang mudah digunakan, toggle switch banyak digunakan pada peralatan elektronika. Sakelar toggle ini sangat bermanfaat pada perakitan alat, karena dapat membuat tampilan alat menjadi lebih enak dipandang. Ukuran toggle switch yang kecil membuat toggle switch menjadi pilihan yang banyak digunakan pada perakitan alat terutama pada tempat yang relatif kecil.

  • Komponen Output

        1. Lampu Led 
LED merupakan kependekan dari Light Emitting Diode, yakni salah satu dari banyak jenis perangkat semikonduktor yang mengeluarkan cahaya ketika arus listrik melewatinya.

        2. Buzzer

Buzzer Elektronika adalah sebuah komponen elektronika yang dapat menghasilkan getaran suara berupa gelombang bunyi. Buzzer elektronika akan menghasilkan getaran suara ketika diberikan sejumlah tegangan listrik dengan taraf tertentu sesuai dengan spesifikasi bentuk dan ukuran buzzer elektronika itu sendiri.

        3. Motor



Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat elektronik dan listrik yang menggunakan sumber listrik DC seperti vibrator ponsel, kipas DC dan bor listrik DC.

  
        4. Ground

Ground adalah titik yang dianggap sebagai titik kembalinya arus listrik arus searah atau titik kembalinya sinyal bolak-balik atau titik patokan (referensi) berbagai titik tegangan dan sinyal listrik di dalam rangkaian elektronika.

        5. Buffer


Voltage follwer memiliki impedansi yang sangat tinggi sehingga tidak membebani rangkaian pengumpan sinyal dibelakangnya. selain itu rangkaian op-amp ini memiliki impendansi output yang rendah yang membuatnya cocok dibebani oleh peranti berikutnya.

  • Resistor

Berdasarkan Kode Warna

Perhitungan untuk Resistor dengan 4 Gelang warna


Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut

Contoh :

Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

4. Dasar Teori[Kembali]

1) Resistor

Simbol :
Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika (V=I R).
Jenis Resistor yang digunakan disini adalah Fixed Resistor, dimana merupakan resistor dengan nilai tetap terdiri dari film tipis karbon yang diendapkan subtrat isolator kemudian dipotong berbentuk spiral. Keuntungan jenis fixed resistor ini dapat menghasilkan resistor dengan toleransi yang lebih rendah.
Cara menghitung nilai resistor:
Tabel warna

Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau   = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak  = Toleransi 10%
Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.





2) Dioda

Spesifikasi

Dioda adalah komponen yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Sebuah Dioda dibuat dengan menggabungkan dua bahan semi-konduktor tipe-P dan semi-konduktor tipe-N. Ketika dua bahan ini digabungkan, terbentuk lapisan kecil lain di antaranya yang disebut depletion layer. Ini karena lapisan tipe-P memiliki hole berlebih dan lapisan tipe-N memiliki elektron berlebih dan keduanya mencoba berdifusi satu sama lain membentuk penghambat resistansi tinggi antara kedua bahan seperti pada gambar di bawah ini. Lapisan penyumbatan ini disebut depletion layer.
 
Ketika tegangan positif diterapkan ke Anoda dan tegangan negatif diterapkan ke Katoda, dioda dikatakan dalam kondisi bias maju. Selama keadaan ini tegangan positif akan memompa lebih banyak hole ke daerah tipe-P dan tegangan negatif akan memompa lebih banyak elektron ke daerah tipe-N yang menyebabkan depletion layer hilang sehingga arus mengalir dari Anoda ke Katoda. Tegangan minimum yang diperlukan untuk membuat dioda bias maju disebut forward breakdown voltage.

Jika tegangan negatif diterapkan ke anoda dan tegangan positif diterapkan ke katoda, dioda dikatakan dalam kondisi bias terbalik. Selama keadaan ini tegangan negatif akan memompa lebih banyak elektron ke material tipe-P dan material tipe-N akan mendapatkan lebih banyak hole dari tegangan positif yang membuat depletion layer lebih besar dan dengan demikian tidak memungkinkan arus mengalir melaluinya. Kondisi ini hanya terjadi pada dioda yang ideal, kenyataannya arus yang kecil tetap dapat mengalir pada bias terbalik dioda.









Dioda dapat dibagi menjadi beberapa jenis:
1. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
2. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
3. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan.
4. Dioda Photo yang berfungsi sebagai sensor cahaya.
5. Dioda Schottky yang berfungsi sebagai Pengendali.

Untuk menentukan arus zenner  berlaku persamaan:
Keterangan:

Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.

3) Transistor

Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

3. Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.
 

Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor. 


Rumus-rumus transistor:
Spesifikasi :
    • Bi-Polar Transistor
    • DC Current Gain (hFE) is 800 maximum
    • Continuous Collector current (IC) is 100mA
    • Emitter Base Voltage (VBE) is > 0.6V
    • Base Current(IB) is 5mA maximum
Konfigurasi Transistor
Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.

4. Op-Amp LM741

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

Op-Amp memiliki beberapa karakteristik, di antaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

Rangkaian dasar Op-Amp


Op Amp IC 741 adalah sirkuit terpadu monolitik, yang terdiri dari Penguat Operasional tujuan umum. Ini pertama kali diproduksi oleh semikonduktor Fairchild pada tahun 1963. Angka 741 menunjukkan bahwa IC penguat operasional ini memiliki 7 pin fungsional, 4 pin yang mampu menerima input dan 1 pin output.

Op Amp IC 741 dapat memberikan penguatan tegangan tinggi dan dapat dioperasikan pada rentang tegangan yang luas, yang menjadikannya pilihan terbaik untuk digunakan dalam integrator, penguat penjumlahan, dan aplikasi umpan balik umum. Ini juga dilengkapi perlindungan hubung singkat dan sirkuit kompensasi frekuensi internal yang terpasang di dalamnya.

Konfigurasi PIN

Spesifikasi:
Respons karakteristik kurva I-O:

    5. Battery

Baterai atau elemen kering adalah salah satu alat listrik yang berfungsi sebagai penyimpan energi listrik dan mengeluarkan tegangan dalam bentuk listrik (sebagai sumber tegangan). Pada umumnya baterai terdiri dari tiga komponen yang penting yaitu :

1. Batang karbon (C) sebagai anode (kutub positif baterai).
2. Seng (Zn) sebagai katode (kutub negatif baterai)
3. Amonium dioksida (NH4CI) sebagai larutan elektrolit (penghantar)

Terdapat dua jenis baterai yaitu :
1. Baterai Primer 
Baterai adalah baterai yang hanya dapat digunakan sekali, menggunakan reaksi kimia yang tidak dapat dibalik (irreversible reaction).  pada umumnya dijual adalah baterai yang bertegangan listrik 1,5 volt.
2. Baterai Sekunder
Baterai sekunder atau biasanya disebut rechargeable battery adalah baterai yang dapat di isi ulang menggunakan reaksi kimia yang bersifat dapat dibalik (reversible reaction) biasanya digunakan pada telepon genggam.
Adapun salah satu persamaan menghitung tegangan adalah :

P = V x I
Keterangan :
P  = Daya (W)
V = Tegangan yang terukur (V)
I   = Arus yang terukur (I)

6. Sensor
        1. Vibration Sensor



Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:
   - Pembesaran sinyal getaran
   - Penyaringan sinyal getaran dari sinyal pengganggu.
   - Penguraian sinyal, dan lainnya.
Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:
  - Sensor penyimpangan getaran (displacement transducer)
  - Sensor kecepatan getaran (velocity tranducer)
  - Sensor percepatam getaran (accelerometer).
Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:
  - Jenis sinyal getaran
  -  Rentang frekuensi pengukuran
  -  Ukuran dan berat objek getaran.
  -  Sensitivitas sensor
Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:
   - Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya
     (power supply) dari luar, misalnya Velocity Transducer.
   - Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.
Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :


        2. Touch Sensor

Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Tubuh manusia memiliki Panca Indera yang berfungsi untuk berinteraksi dengan lingkungan di sekitarnya. Konsep yang sama juga diterapkan pada mesin atau perangkat elektronik/listrik agar dapat melakukan interaksi dengan lingkungan disekitarnya. Oleh karena itu, berbagai jenis sensor pun diciptakan untuk melakukan tugas tersebut. Salah satu sensor tersebut adalah Sensor Sentuh atau Touch Sensor.

Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Pengertian SENSOR SENTUH dan jenis-jenisnya (KAPASITIF DAN RESISTIF)Sensor Kapasitif

Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.

Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.

Sensor Resistif

Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.



        3. Sound Sensor

Sensor suara adalah sebuah alat yang mampu mengubah gelombang sinusioda suara menjadi gelombang sinus energi listrik. Sensor suara ini digunakan untuk menghantarkan listrik berdasarkan pendeteksian suara untuk menghidupkan perangkat yang dihubungkan. Prinsip kerja sensor suara sederhana dan sangat mudah. Ia bekerja seperti telinga manusia. Modul sensor suara terdiri dari papan sirkuit kecil yang merupakan mikrofon 50 Hz-10 kHz dan beroperasi dengan modul detektor sensor untuk deteksi. Komponen sirkuit pemrosesan eksternal lainnya mengubah gelombang suara menjadi sinyal listrik.

Komponen perangkat keras penting lainnya adalah pembanding presisi tinggi LM393N. Perangkat ini wajib mendigitalkan sinyal listrik ke keluaran digital D0. Untuk menyesuaikan sensitivitas output digital D0, modul sensor suara berisi potensiometer bawaan. Sensor suara berisi mikrofon yang disebut mikrofon kondensor dengan 2 pelat bermuatan - satu adalah diafragma dan yang lainnya adalah pelat belakang. Pelat ini tampak seperti kapasitor. Jika sinyal suara (bertepuk tangan, membentak, mengetuk, alarm) atau sinyal audio bergerak melalui udara dan mengenai diafragma mikrofon, maka jarak antara 2 pelat bermuatan berubah karena getaran diafragma.

Oleh karena itu perubahan kapasitansi antara pelat ini menghasilkan sinyal listrik keluaran. Sinyal keluaran ini sebanding dengan sinyal suara masukan yang diterima mikrofon. Terakhir, sinyal keluaran diperkuat oleh amplifier dan didigitalkan untuk menentukan intensitas sinyal suara yang masuk.


        4. Infra Red Sensor


Sistem sensor infra merah pada dasarnya menggunakan infra merah sebagai media untuk komunikasi data antara receiver dan transmitter. Sistem akan bekerja jika sinar infra merah yang dipancarkan terhalang oleh suatu benda yang mengakibatkan sinar infra merah tersebut tidak dapat terdeteksi oleh penerima.

5. Percobaan[Kembali]

Prinsip Kerja

Soal No.1


a. Sensor Infrared

    Pertama dari sensor infrared, dimana ketika hewan terdeteksi oleh sensor maka logistednya bernilai 1, lalu maka menghasilkan tegangan output sebesar 5 volt, dikarenakan op amp bertindak sebagai voltage follower maka tegangan input sama dengan tegangan out put jadi pada output tegangan pada op amp berniali 5 v juga, lalu tegangan mengalir ke melalui R3 lalu menuju ke kaki base transistor, tipe transistornya adalah self-bias. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan kunci pada perangkap akan terkunci secara otomatis.

  b.Sensor Analog

Ketika terdeteksi jarak lebih kecil dari 5cm oleh sensor, maka logicstate berlogika 1 dan maka menghasilkan tegangan output sebesar 2,47 volt, dikarenakan op amp bertindak sebagai non inverting dengan vref = +, dengan V1 = Vref = 2,47 volt dan V2 = 2,10 volt maka Vout = Aol x (V1-V2), dikarenakan Vsat op amp hanya ±15V, jadi Vout = ±Vsat-1. Jadi pada output tegangan pada op amp bernialai 14v, lalu tegangan mengalir ke melalui R1 lalu menuju ke kaki base transistor, tipe transistornya adalah fixed bias. Karena tegangan di kaki base transistor telah cukup maka transistornya menjadi aktif maka ada arus dari power suplay lalu menuju ke relay lalu ke kaki kolektor transistor menuju ke kaki emitor, dari kaki emitor menuju ke ground. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan pintu pada perangkap akan tertutup secara otomatis

Soal No.2


1. Touch Sensor
 
Prinsip kerja :
Sensor touch yang pertama berguna untuk membuka pintu, sensor touch yang kedua berfungsi untuk menutup pintu. Pada Sensor touch, ketika touch sensor belogika 1 atau mendeteksi adanya orang yang menekan tombol sehingga pintu terbuka atau tertutup dimana ada arus keluar dari Vout sensor sebesar 5 V, lalu menuju ke R1 sebesar 0,86 V lalu kaki base transistor menuju ke kaki emitor transistor dan menuju ke ground. karena arus yang keluar di kaki transistor sudah cukup untuk mengaktifkan transistor sehingga transistor aktif sehingga arus yang mengalir dari power supply melewati relay menuju kaki kolektor ke kaki emitor dan diteruskan ke ground karena ada arus yang melewati relay maka switch relay berpindah ke kiri, karena switch relay berpindah ke kiri maka ada arus yang mengalir dari baterai menuju ke motor sehingga mengaktifkan motor yang mengakibatkan pintu terbuka atau pun tertutup pintu terbuka ditandai dengan aktifnya led berwarna biru, pintu tertutup ditandai dengan aktifnya led berwarna hijau sebagai indicator.

2. PIR Sensor
 
 
Prinsip kerja :
Pada sensor PIR, jika sensor mendeteksi barang atau adanya orang di depan pintu maka sensor pir akan aktif sehingga membuka pintu kembali. Sensor PIR bekerja dengan cara menangkap pancaran infra merah, kemudian pancaran infra merah yang tertangkap akan masuk melalui lensa fresnel dan mengenai sensor pyroelectric, sinar infra merah mengandung energi panas membuat sensor pyroelectric dapat menghasilkan arus listrik arus tersebut diteruskan ke kaki transistor selanjutnya di alirkan ke power suplay melewati relay dikarnakan ada arus yg melewatinya maka relay akan switch.

Soal No.3


1.Sensor LM35
    Ketika berada pada suhu > 40 derajat: arus sumber tegangan sebesar 9V masuk ke sensor LM35 sehingga arus akan mengalir menuju ke kaki non inverting op amp, 1° pada sensor lm35 sama dengan 0,01 V sehingga ketika suhu 41 tegangan yg terbaca dikaki non inverting op amp adalah 0,01 x 41 = 0,41V.  Rangkaian yang dipakai adalah rangkaian detektor non inverting, dimana pada rangkaian detektor non inverting itu terdapat tegangan referensi yang dapat diatur menggunakan potensiometer dgn maksimal tegangan sebesar 1V.  Cara mencari nilai tegangan referensi, persentase potensiometer yang dipakai dikali maksimal tegangan referensi, akan didapatkan (41%x1=0,41V). Kemudian, di rangkaian detektor non inverting, terdapat tegangan saturasi yang dimana ketika tegangan input >= tegangan referensi maka output yg dihasilkan adalah +Vsat, namun apabila tegangan input kecil dari tegangan referensi maka outputnya -Vsat. didapat dgn rumus (+-vsat= +-vs+-2) sehingga yang kita dapatkan pada rangkaian ini, krna tegangan input>= tegangan referensi, kita dapatkan +vsat sebesar 8V. Arus akan melewati R1 dimana pada R1 terdapat hambatan sebesar 1k, kemudian arus memasuki kaki basis transistor sehingga tegangan yg terbaca pada kaki base adalah vbe = vcc-Ib.rb (9 - 0,008 x 1000 = kurang lebih sekitar 1V an). Karena tegangan pada kaki basis didapat 1,33V, maka transistor akan aktif (transistor aktif ketika tegangan pada kaki basis sebesar >= 0,7V). Arus dari sumber tegangan sebesar 9V mengalir menuju relay kemudian ke kaki kolektor lalu emitor dan ke ground. Karena transistor aktif, maka switch relay akan berpindah ke kiri sehingga batrai sebesar 12V mengalir dan motor akan bergerak untuk menghidupkan kipas pendingin.

Ketika berada pada suhu < 41°, maka arus dari tegangan sumber sebesar 9v akan mengalir ke sensor lm35 dan menuju kaki non inverting op amp, tegangan yg terbaca kita ambil 41, sehingga yg keluar adalah 0,41. Namun karena suhu kurang dari 41, arus tidak dapat mengalir sehingga keluaran dari output negatif dan transistor tidak on, sehingga switch pd relay tidak pindah ke kiri dan motor tidak berjalan.

2.Sensor HIH-5030
    Sensor ini bekerja ketika mendeteksi kelembaban disekitar meningkat yang beriringan dengan Sensor LM35 dimana ketika kelembaban lingkungan sekitar inkubator akan meningkat dimana apabila kelembaban yang terukur >55 maka sensor akan merespon dengan mengeluarkan output yang masuk kedalam op amp dan terus ke transistor melalui kaki base dan dari Vcc tegangan masuk ke relay dan menyebabkan relay memiliki tegangan sehingga switch pada relay berpindah dan membuat suatu rangkaian loop tertutup dan menghidupkan Heater sebagai pemanas untuk mengurangi kelembaban yang terukur. Lalu dari relai tadi tegangan masuk ke transistor melalui kaki kolektor, maka dari kedua kaki transistor tadi dikeluarkan melalui kaki emitor dan masuk ground.

3.Sensor Gas
    Ketika sensor merespon asap dan gas, maka sensor akan ditandai dengan logika satu dan arus akan mengalir dari sensor menuju kaki non inverting op amp, tegangan akan terbaca sebesar 5 volt. Rangkaian yang dipakai adalah rangkaian buffer/voltage follower dimana penguatan (A=vo/vi=1) sehingga vin = vout sebesar 5 volt. Arus dari R3 dan R4 masuk ke kaki basis transistor sehingga tegangan yg terbaca adalah 0.79V. dikatakan fixed bias karena ada resistor yg terhubung ke sumber tegangan dan kaki basis. Transistor akan on, sehingga arus dari tegangan sebesar 8v akan mengalir menuju relay lalu kolektor ke emitor dan ke ground. Switch relay akan berpindah ke kiri dan tegangan baterai sebesar 12V akan mengalirkan arus ke cabang pertama arus akan mengalir dan membuat motor menyala untuk menghisap gas.

Soal No.4



  a. Sensor Infrared

    Pertama dari sensor infrared, dimana ketika hewan terdeteksi oleh sensor maka logistednya bernilai 1, lalu maka menghasilkan tegangan output sebesar 5 volt, dikarenakan op amp bertindak sebagai voltage follower maka tegangan input sama dengan tegangan out put jadi pada output tegangan pada op amp berniali 5 v juga, lalu tegangan mengalir ke melalui R3 lalu menuju ke kaki base transistor, tipe transistornya adalah self-bias. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan kunci pada perangkap akan terkunci secara otomatis.

       b. Sensor Vibration

 Dimana ketika hewan terdeteksi getaran oleh sensor maka logistednya bernilai 1, lalu maka menghasilkan tegangan output sebesar 5 volt, dikarenakan op amp bertindak sebagai voltage follower maka tegangan input sama dengan tegangan out put jadi pada output tegangan pada op amp berniali 5 v juga, lalu tegangan mengalir ke melalui R3 lalu menuju ke kaki base transistor, tipe transistornya adalah emitter stabilizer-bias. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan kunci pada perangkap akan terkunci secara otomatis

       c. Sensor Touch

    Ketika terdeteksi sentuhan oleh sensor,  maka menghasilkan tegangan output sebesar 5 volt, dikarenakan op amp bertindak sebagai non inverting amplifier, maka tegangan output sama dengan tegangan out sama dengan Vout=((Rf/Rin) +1) vin jadi pada output tegangan pada op amp bernialai 10v, lalu tegangan mengalir ke melalui R5 lalu menuju ke kaki base transistor, tipe transistornya adalah self bias. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak sehingga motor tersebut bergerak dan pintu pada perangkap akan tertutup secara otomatis


       d. Sensor Sound

 Ketika terdeteksi suara oleh sensor, maka logicstate berlogika 1 dan maka menghasilkan tegangan output sebesar 5 volt, dikarenakan op amp bertindak sebagai non inverting amplifier, maka tegangan output sama dengan tegangan out sama dengan Vout=((Rf/Rin) +1) vin jadi pada output tegangan pada op amp bernialai 10v, lalu tegangan mengalir ke melalui R12 lalu menuju ke kaki base transistor, tipe transistornya adalah fixed bias. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan pintu pada perangkap akan tertutup secara otomatis


       e. Sensor Gas

 Ketika sensor merespon CO2, maka sensor akan berlogika satu dan arus akan mengalir dari sensor menuju kaki non inverting op amp, tegangan akan terbaca sebesar 5 volt. Lalu Vout akan diumpankan ke Op-Amp dengan rangkaian Differential Amplifier dengan rumus Vout = Vo(non inverting) - Vo(inverting). Selanjutnya arus output rangkaian masuk menuju kaki base pada transistor, disini kami menggunakan rangkaian oemberian bias self bias, lalu arus menuju kaki emittor dan menuju ke ground. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan pintu pada perangkap akan tertutup secara otomatis

        f. Sensor Analog

Ketika terdeteksi jarak lebih kecil dari 5cm oleh sensor, maka logicstate berlogika 1 dan maka menghasilkan tegangan output sebesar 2,47 volt, dikarenakan op amp bertindak sebagai non inverting dengan vref = +, dengan V1 = Vref = 2,47 volt dan V2 = 2,10 volt maka Vout = Aol x (V1-V2), dikarenakan Vsat op amp hanya ±15V, jadi Vout = ±Vsat-1. Jadi pada output tegangan pada op amp bernialai 14v, lalu tegangan mengalir ke melalui R1 lalu menuju ke kaki base transistor, tipe transistornya adalah fixed bias. Karena tegangan di kaki base transistor telah cukup maka transistornya menjadi aktif maka ada arus dari power suplay lalu menuju ke relay lalu ke kaki kolektor transistor menuju ke kaki emitor, dari kaki emitor menuju ke ground. Dikarenakan vbe lebih dari 0.6v, jadi relay aktif dan menyebabkan seitch bergeser hingga loop pada relay akan tertutup. Tertutupnya loop dari relay maka arus mengalir dari kutub positif baterai menuju motor sehingga motor tersebut bergerak dan pintu pada perangkap akan tertutup secara otomatis

Video Penjelasan
Soal No.1

Soal No.2

Soal No.3

Soal No.4

6. Link Download[Kembali]

Download File Rangkaian 1 (Disini)

Download File Rangkaian 2 (Disini)

Download File Rangkaian 3 (Disini)

Download File Rangkaian 4 (Disini)

Download File Video Rangkaian 1 (Disini)

Download File Video Rangkaian 2 (Disini)

Download File Video Rangkaian 3 (Disini)

Download File Video Rangkaian 4 (Disini)

Comments

Popular posts from this blog